
XSS ATTACK DETECTION AND MITIGATION USING

MULTI-LAYER SECURITY MECHANISM (MLSM)

1Hartono 2Sriyanto

hartono@umko.ac.id, sriyanto@darmajaya.ac.id

1Universitas Muhammadiyah Kotabumi, 2Institut Informatika dan Bisnis Darmajaya

Abstrak: BSSN menyebut bahwa terdapat 12,9 juta ancaman siber di Indonesia selama tahun

2018. Pada Januari – April 2020, jumlah serangan siber meningkat tinggi. Dalam empat bulan

tersebut, jumlah serangan siber mencapai 88 juta. Metode, aplikasi, dan teknik serangan yang

digunakan tidak dapat terindentifikasi secara mudah. Namun, menurut data dari OWASP Top Ten

Tahun 2017 dan 2021 (statistics based proposal), terdapat 10 celah keamanan website yang paling

sering dieksploitasi. XSS menjadi salah satu celah keamanan yang masuk dalam daftar tersebut.

Dampak XSS sangat fatal, karena penyerang dapat melakukan account takeover, pencurian data

pribadi, dan sebagainya. Terdapat beberapa penelitian yang telah mengimplementasikan

mekanisme mengatasi serangan XSS. Namun, implementasi tersebut belum mendapatkan hasil

yang efektif dan holistik. Mekanisme yang diujicobakan penelitian sebelumnya tidak dapat

mengatasi setiap jenis serangan XSS dan dilakukan secara tidak representatif. Salah satu penyebab

kegagalan metode sebelumnya adalah penggunaan mekanisme single layer security. Oleh karena

itu, tujuan penelitian ini adalah menguji efektivitas mekanisme multi layer security (MLSM)

dalam mendeteksi dan memitigasi serangan XSS. MLSM terdiri dari lima lapisan, yaitu OWASP

ModSecurity, Framework/CMS Security Feature, HTTP Middleware, Templating Engine, dan

Data Sanitizer. Untuk menguji tingkat keamanan MLSM, peneliti melakukan simulasi serangan

menggunakan aplikasi Arachni dan ZAP pada sample website yang memiliki 170 celah keamanan

XSS. Berdasarkan uji coba serangan ke website non MLSM, Arachni sukses mengeksekusi 168

dari 170 (98,82%) dan ZAP mengeksekusi 103 dari 170 (60,58%) serangan XSS. Namun, setelah

mengimplementasikan MLSM pada website, serangan Arachni dan ZAP gagal dalam melakukan

serangan XSS, baik stored, reflected, dan DOM based XSS. Tidak ada satu jenis pun serangan

XSS yang dapat dilakukan pada website MLSM.

Kata kunci: Cross Site Scripting, XSS, Cyber Security, Multi Layer Security, OWASP

Abstract: BSSN stated that there were 12.9 million cyber threats in Indonesia during 2018. In

January - April 2020, the number of cyber-attacks increased. In those four months, the number

of cyberattacks reached 88 million. The methods, applications, and attack techniques used

cannot be identified easily. However, according to data from the OWASP Top Ten in 2017 and

2021 (statistics-based proposal), there are 10 website security vulnerabilities that are most

often exploited. XSS is one of the security holes included in the list. In addition to being a

loophole that is often found, the impact of XSS is very fatal, because it allows attackers to do

account takeovers, theft of personal data, and so on. There are several studies that have

implemented mechanisms to detect and mitigate XSS attacks. However, the implementation has

not yet obtained effective and holistic results. The mechanism tested by previous research still

leaves a security problem that allows attackers to execute XSS attacks. One of the things that

cause this problem is the use of a single-layer security mechanism. Therefore, the purpose of

this study is to test the effectiveness of the multi-layer security (MLSM) mechanism in detecting

and mitigating XSS attacks. MLSM consists of five layers, namely OWASP ModSecurity,

Framework/CMS Security Feature, HTTP Middleware, Templating Engine, and Data
Sanitizer. To test the security level of MLSM, the researchers conducted a simulation of attacks

mailto:hartono@umko.ac.id
mailto:sriyanto@darmajaya.ac.id

Jurnal Sienna, Volume 3, Nomor 2, Desember 2022

2

using the Arachni and ZAP applications on a sample website that had 170 XSS security

vulnerabilities. Based on test attacks on non-MLSM websites, Arachni successfully executed

168 of 170 (98.82%), and ZAP executed 103 of 170 (60.58%) XSS attacks. However, after

implementing the MLSM feature on the website, Arachni and ZAP attacks failed to perform

XSS attacks, both stored, reflected, and DOM-based XSS. There is no single type of XSS attack

that can be carried out on MLSM websites.

Keywords: Cross Site Scripting, XSS, Cyber Security, Multi Layer Security, OWASP

1. INTRODUCTION

Based on data from the National Cyber

and Crypto Agency (BSSN), there were

around 12.9 million cyber threat attempts to

Indonesia during 2018. A total of 513,900 of

the total attacks were malware (Serangan

Siber Ancam Indonesia - Infografik

Katadata.co.id, 2019). Not only that, during

January - April 2020, BSSN recorded that

there were around 88,414,296 cyber-attack

activities in Indonesia (Rekap Serangan Siber

(Januari – April 2020) | Bssn.Go.Id, n.d.).

Besides being motivated by various

motivations, the technology used is also

varied, sophisticated, and difficult to detect.

When viewed from the type, there are three

types of cyber threats, namely attacks, crimes,

and cyber terrorism (Giri, 2019). These three

cyber threats have a very dangerous potential

for national security. Based on a review of the

attack methods used, the three types of cyber

threats can actually use the same method

(Buchanan, n.d.). It means that even one

attack method can be used to carry out all

three types of cyber threats. Therefore, in an

effort to overcome these problems, the

detection and mitigation of cyber threat

methods must be formulated well,

holistically, and comprehensively.

One method that is often used to exploit

website security vulnerabilities is the Cross-

Site Scripting (XSS) method. This method

takes advantage of the XSS security

vulnerability, because the website does not

validate or filter the submitted input, either

through forms, URLs, or DOM (Document

Object Manipulation). The XSS method uses

Javascript codes to inject the page through the

client-side. This security vulnerability is not a

new security vulnerability. However, in

reality, XSS is still one of the security holes

that has been included several times in the list

of Open Web Application Security Project

(OWASP) Top-10 Web Vulnerabilities

(“OWASP Top-10 2021, Statistically

Calculated Proposal.,” n.d.). OWASP is an

international organization that focuses on

research and development of security

systems, as well as handling internet security

issues from cyber threats (Marchand-Melsom

& Nguyen Mai, 2020). It shows that XSS

security vulnerabilities are important to

research

Table 1. OWASP Top-10 Vulnerabilities

2017 and 2010

OWASP Top 10 2017
OWASP Top 2021

Proposal

A1 Injections A1 Injections

A2 Broken

Authentification

A2 Broken Authentification

A3 Sensitive Data

Exposure

A3 Cross-Site Scripting

(XSS)

A4 XML External Entities

(XXE)

A4 Sensitive Data Exposure

A5 Broken Access Control A5 Insecure Deserialization

A6 Security

Misconfiguration

A6 Broken Access Control

A7 Cross-Site Scripting

(XSS)

A7 Insufficient Loggin &

Monitoring

A8 Insecure

Deserialization

A8 Server Side Request

Forgery (SSRF)

A9 Known Vulnerabilties A9 Known Vulnerabilities

A10 Insufficient Logging &

Monitoring

A10 Security

Misconfiguration

XSS Attack Detection And Mitigation Using Multi-Layer Security Mechanism (MLSM)

3

Based on data from OWASP Top-10

data in 2017, XSS occupies the 7th position in

the list of security vulnerabilities that are most

often found in web-based applications

worldwide (Søhoel, n.d.). Not only that, in the

OWASP Top-10 2021 (statistics-based

proposal), the position of the XSS security

vulnerability rose to third (“OWASP Top-10

2021, Statistically Calculated Proposal.,”

n.d.). This fact shows that XSS is a security

vulnerability that is still a problem on many

websites. Judging from the risks, XSS can

cause very serious problems, such as theft of

user login data, transfer of confidential

information, manipulating website content,

and even stealing accounts belonging to

website users (Gan et al., 2021; Gupta &

Chaudhary, n.d.; Rodríguez et al., 2020). XSS

cases identified on the eBay site can even

make attackers enter a malicious code in the

item description field in the item auction

feature (Mahmoud et al., 2017).

In addition, XSS attacks aimed at

government sites can allow attackers to

perform the ATO (Account Takeover)

method, so this attack has a large enough

potential to disrupt national security stability.

Based on these problems, both website

developers and web managers must be able to

detect, anticipate, and mitigate XSS attacks.

Actually, there are several methods,

techniques, or tools to carry out the detection

and mitigation (Mahmoud et al., 2017).

However, in practice, XSS attacks are quite

complex and can be carried out through a

variety of methods, techniques, and

applications. A single security defense system

or mechanism (single security layer) has

proven to be unable to overcome the massive

XSS attacks on the internet (Akbar & Ridha,

n.d.; Mahmoud et al., 2017). Therefore, the

purpose of this research is to test the

implementation of MLSM (Multi-Layer

Security Mechanism) to improve the

detection and mitigation of websites from

XSS attacks. In this mechanism, every layer

of security in MLSM can synergize with each

other and cover every security gap, so that the

website can be more secure.

2. PREVIOUS RESEARCH

There are several studies which have

discussed or tested some various methods,

applications, or techniques to detect and

overcome XSS attacks. Research (Akbar &

Ridha, n.d.) analyzed web security from XSS

attacks using the OWASP Web Application

Firewall Mod Security (OWASP

ModSecurity) module. OWASP ModSecurity

is used to block attempted or attempted XSS

attacks on websites that are on the same web

server. Research (Wijayarathna &

Gamagedara Arachchilage, 2019) tested the

implementation of OWASP ESAPI Output

Encoding to perform XSS attack filtering and

measure its success rate. In addition, to

overcome XSS attacks, research

(Yulianingsih, 2017) applies the Meta

Character method and research (Putra et al.,

2020) uses the Advanced Encryption

Standard (AES) algorithm. Each of these

studies certainly has different results.

However, because the method, application, or

technique used is a single security

mechanism, the security mechanism is still

not effective. The security mechanism only

addresses (patching) one side of the loophole

or security issue and is not comprehensive.

The previous research can overcome reflected

XSS, but cannot overcome XSS attacks of

stored XSS type. Therefore, MLSM is

implemented to address every type of XSS

security vulnerability.

In additio, in order to dealing with XSS

attacks, there are several studies conducted to

detect or measure the level of vulnerability of

XSS security vulnerabilities. Research (Ahad

et al., 2018; Kurniawan & Setianto, 2020; Sari

& Putra, 2017) conducted an analysis or

Jurnal Sienna, Volume 3, Nomor 2, Desember 2022

4

measured the level of vulnerability on the web

from XSS attacks. Meanwhile, studies

(Mahmoud et al., 2017; Salas & Martins,

2014; Udayana University, Bali, Indonesia et

al., 2019) made a comparison of several

single security mechanisms to overcome and

detect XSS attacks. Based on a review of

mitigation efforts, research (Mahmoud et al.,

2017; Mateo Tudela et al., 2020; Rodríguez et

al., 2020; Wibowo & Sulaksono, 2021)

discusses how to mitigate efforts for web

creators or managers from XSS attacks. In

addition, the implementation of layered

security mechanisms has been carried out by

research (Mokbal et al., 2019) using the

perception algorithm. This method utilizes an

artificial neural network model to detect XSS

attacks based on training data. However,

research(Mokbal et al., 2019) was carried out

for the purpose of testing or measuring the

success rate of detection, not for the purpose

of addressing and mitigating.

3. CROSS SITE SCRIPTING

Cross-Site Scripting (XSS) is an attack

which occurs on the client-side through the

injection of Javascript-based code into web

pages. Most XSS attacks will be carried out

via HTML forms. Starting from input in the

form of text input, numbers, text areas, and so

on (Mokbal et al., 2019). XXS attacks can be

carried out because the input from the client

is not properly validated. XSS attacks are

divided into 3 types, namely (1) Stored XSS;

(2) Reflected XSS; and (3) DOM Based XSS.

By implementation, most cases of XSS

attacks will be executed through five

intermediaries, namely the search engine that

reflects the search keywords entered, the error

message that reflects the string containing the

error, the form that can be filled out and

submitted by the user, the form stored in the

database, and the dashboard. web-based

messaging or chat pages that allow users to

send messages through the system (Joshi,

n.d.; Mahmoud et al., 2017). These attack

techniques will certainly continue to develop

along with technological developments that

occur (Shrivastava et al., 2016; XSS Attacks

Cross Site Scripting Exploits and Defense,

n.d.).

3.1. Stored XSS

A stored XSS attack occurs when an

attacker enters data or form fields in the form

of javascript code into the database storage,

without going through the validation process

or filtering the fields. The data is directly sent

and stored in the database. As a result, when

the user displays the database through the

browser, the XSS code is then executed by the

browser. An overview of the stored XSS code

is below.

HTML code <textarea> comments

<textarea id="comments " name="comments

"></textarea>

XSS code injected into comment <textarea> form

saved to database

XSS code is executed when the user opens comment

<textarea id="comments" name="comments”>

 <script>/* Embeded XSS Code*/</script>

</textarea>

3.2. Reflected XSS

Technically, a reflected XSS attack is

similar to a stored XSS attack, in that it is

submitted via a form and executed when the

browser accesses an infected page. However,

in this attack, the website does not store the

XSS code in the database. The data is directly

reflected or displayed on the infected web

page. Therefore, in this type of attack, most

XSS code will be embedded via URL

HTML Code <input>

<input type="text" name="q" id="keyword" />

XSS Code is injected to URL

https://<web-target-

address>.com/index.php?q=<injection-location>

XSS Attack Detection And Mitigation Using Multi-Layer Security Mechanism (MLSM)

5

3.3. DOM Based XSS

DOM Based XXS is mostly devoted to

Javascript-based web applications or those

that use Javascript to process and display data

entered by the user (JS Rendered Page). As

with previous types of XSS attacks, the data

is not filtered and validated, so attackers can

insert XSS code into the target web. Attackers

usually take advantage of the browser console

to carry out this attack. The following is an

example of the code used by Dom Based XSS.

HTML Code <input>

<input type="text" name="q" id="keyword" />

XSS code is injected into DOM

var keyword =

document.getElementById(keyword).value;

var result = document.getElementById(‘result’);

result.innerHTML = 'You search for ' + <injection-

location>;

3.4. Mekanisme Multi Layer Security

The security mechanism implemented

in this research consists of five layers, namely

OWASP ModSecurity, HTTP Middleware,

Templating Engine, Data Sanitizer, and

Framework or CMS Default Security

Features. All components are integrated to

build a solid security wall that can withstand

various attacks, especially XSS attacks. Each

component works on its own scope and forms

a firewall layer that protects each other. This

mechanism also ensures that attacks can be

detected, resolved, and mitigated effectively.

Therefore, this security mechanism does not

depend on the framework, CMS, or

technology used by the website application..

3.4.1. OWASP ModSecurity

OWASP ModSecurity (OWASP Web

Application Firewall Mod Security) is an

Apache web server application or module that

runs as a service and acts as a firewall. This

firewall works by scanning every HTTP

traffic that goes through the web server

(Alamsyah, n.d.). Based on the traffic of

packet, OWASP ModSecurity accepts or

drops requests depending on the configured

rules. The rules, in this case, are called as core

rule set (Akbar & Ridha, n.d.).

3.4.2. HTTP Middleware

HTTP Middleware is a web application

component that sits one level above routing.

The main task of this layer is to managing web

traffic. In this case, request and response will

be managed in this type of layer (Varghese,

2015). Through this HTTP Middleware layer,

web developers could implement algorithms

wich check whether requests and responses

contain XSS.

3.4.3. Templating Engine

The main task of A layout engine or

templating engine is an application

component that is to render application

layouts or themes. If the templating engine is

properly configured, XSS code can be

detected, rejected, or converted into safe

HTML format before being displayed to web

visitors..

3.4.4. Data Sanitizer

In many modern web applications, this

security layer has become standard function,

so it is usually provided by the programming

language or web framework. For example,

Wordpress uses the function name

esc_html(html) or PHP uses

htmlspecialchars(html) to filter out HTML

code that contains XSS codes. This function

can be used to filter the form fields or web

content before they are displayed.

3.4.5. Framework/CMS Security Features

The security components at this layer

are in the form of applications packaged in the

form of a web framework or CMS. Each web

framework and CMS has its own

characteristics and security features (Kaluza

et al., 2019). However, in this layered security

Jurnal Sienna, Volume 3, Nomor 2, Desember 2022

6

mechanism, the web framework or CMS have

to meet several fundamental minimum

requirements: (1) having HTTP middleware,

hook, or the similar features; (2) having data

sanitizer functions which could be activated at

the template and database levels; and (3)

having template engine which has an escape

or filter.

4. METHODS

4.1.1. Mechanism and Stages

This study applies a layered security

mechanism to solve XSS attacks. As shown in

figure 1, the attacker must knock out five

layers of defensive walls to carry out an

attack. Each layer has its own role and scope

of work. With layered security mechanisms,

XSS attacks become very difficult to carry

out. Layer 1 protects all websites that are on

the same web server. Layer 2 ensures that

every request and response traffic does not

contain XSS code. In the last layer, layers 3,

4, and 5 eliminate XSS code execution on the

webview.

Figure 1. MLSM Implementation to Protect

Entire Websites on the Web Server

This study applies a layered security

mechanism on a website based on the Django

framework. Testing or implementation of

security is carried out in two stages. The level

of web security in both stages was tested by

two different attacking applications. In the

first stage, XSS attacks are carried out using

two attacker applications (Zap and Arachni)

on websites that have not implemented

MLSM. Then, in the second stage, another

XSS attack is carried out using two

applications (Zap and Arachni) and the same

target website. However, in the second stage,

the researcher activated the MLSM security.

Figure 2. Stages of Application Security Tests

that Have Not and Have Implemented MLSM

The results of these two stages are

automatically recorded in the form of a report

by each attacker application. Based on the

results of the attack report, the researcher then

took three actions, namely (1) data cleaning to

separate the results of XSS and non XSS

attacks; (2) categorizing the XSS

vulnerabilities found by type; (3) recapitulate

the findings of XSS security vulnerabilities;

and (4) to compare the effectiveness of the

findings previous studies.

4.1.2. XSS Vulnerable Attacker

The tools used to test XSS

vulnerabilities are Arachni and OWASP Zap.

Acachni is a feature-rich and modular Ruby-

based application that is often used by

penetration testers (pentesters) to evaluate the

security of web applications (Institute of

Engineering & Management, Y-12 Saltlake

Electronics Complex, Sector V, Kolkata -91

INDIA et al., 2014). Arachni version used is

2.0. OWASP ZAP is an application that is

used to scan website security holes

comprehensively and holistically, because it

is able to detect security holes, even those on

XSS Attack Detection And Mitigation Using Multi-Layer Security Mechanism (MLSM)

7

pages that require authentication (Prasad,

2016). In this study, researchers used ZAP

version 2.10.0.

4.1.3. Method for Detecting Attacks

When an XSS attack is sent, the security

layer performs 2 main tasks, namely:

detecting and responding to attacks.

a) OWASP ModSecurity Layer

OWASP ModSecurity is a service that

runs in conjunction with a web server. This

ModSecurity detects and overcomes attacks

based on predetermined rules. In this study,

researchers used the default XSS rule to

overcome XSS. The full version of the rule

can be accessed on the page owasp-

modsecurity-crs.

b) HTTP Middleware Layer

At the HTTP Middleware layer,

researchers use middleware code that aims to

detect XSS attacks, then direct the request

from the attack to a 404 page or not found.

Figure 4. XSS Attack Detection and

Blocking Flow by HTTP Middleware

c) Templating Engine Layer

The task of this layer is to protect the

website from stored XSS attacks. This attack

is executed when database data is displayed

on a web page without going through a

validation process. Through the

implementation of the templating engine,

XSS code cannot be executed.

d) Data Sanitizer Layer

This layer is to filter data before it is

stored in the database and before it is

displayed on web pages. Each web

framework or programming language has its

own function and syntax to filter data. To

apply the sanitizer data, the researchers used

Django-Bleach.

e) Framework/CMS Layer

Figure 4. Django Default Security

Based on HTTP Middleware

At the CMS or Framework layer, Django

has its own security features. The security

vulnerabilities that are open in Django will

mostly occur on the application side that is

developed separately by web developers.

4.1.4. Web Framework for Testing

Figure 5. Vulnerable Chat Application as a Test

Target Web (Has 170 XSS Vulnerabilities)

The website used to conduct this

research is a web based on the Django

framework which is activated on the Apache2

webserver. Django was chosen for three

reasons, namely: (1) it has HTTP Middleware

security features that can be configured

quickly and easily; (2) regular expression-

https://d.docs.live.net/0134b664e42fc2ab/Attachments/MTI/Artikel/MMLS/owasp-modsecurity-crs
https://d.docs.live.net/0134b664e42fc2ab/Attachments/MTI/Artikel/MMLS/owasp-modsecurity-crs

Jurnal Sienna, Volume 3, Nomor 2, Desember 2022

8

based routing configuration, thus simplifying

URL filtering; and (3) has a built-in template

engine that can apply XSS code-indicated

content filtering.

Before the process of security testing,

the Django-based web framework was filled

with fake chat applications. Researchers have

disabled the security features of HTTP

Middleware and Data Sanitizer (model and

templating engine). The following are the

details of the configuration of the test website

used before using the layered security

mechanism.

HTTP Middleware : Off

Template Engine : Auto Escape Off

Model Sanitizer : False

Vulnerabilities : 170

5. RESULT AND DISCUSSION

After testing to the target web running

on the Apache 2.4 web server on the Linux

Ubuntu 20.04.2 (WSL Version) operating

system, various XSS attack results or reports

were found from Arachni and ZAP. This

happens because each attacker application has

a different character in imple-menting the

attack algorithm. The following are the results

of the MLSM implementation of testing.

5.1. Arachni and ZAP Attacks on Non-

MLSM Websites (Unimplemented)

A. Arachni Attack

After testing or simulating attacks

against web targets using Arachni, there are

168 of 170 (98.82%) security holes that

Arachni can attack. Based on the analysis of

the attack reports, the attack process by

Arachni took 2 hours 51 minutes.

Based on the type of attack, the details

of the XSS attacks that were successfully

carried out were 124 attacks in the form of

DOM based XSS, 22 stored XSS, and 22

reflected XSS. The following is a breakdown

of the XSS vulnerabilities found by Arachni..

Tabel 2. XSS Security Vulnerabilities

Found by Arachni

 Type of Attack Total

1 Dom Based XSS 124

2 Stored XSS 22

3 Reflected XSS 22

Total 168

Figure 7. Percentage of XSS Security

Vulnerabilities Found

B. ZAP Attack

Figure 8. Percentage of XSS Security

Vulnerabilities Found

22 22
124

0

50

100

150

Stored XSS

Reflected XSS

DOM XSS

12

2

89

1

13

13

9

2

23

13

Cross Site Scripting (DOM…

Cross Site Scripting…

Cross Site Scripting…

Vulnerable JS Library

Absence of Anti-CSRF…

Cookie No HttpOnly Flag

X-Content-Type-Options…

Information Disclosure -…

Loosely Scoped Cookie

Timestamp Disclosure -…

0 20 40 60 80 100

Jumlah Serangan Berhasil

XSS Attack Detection And Mitigation Using Multi-Layer Security Mechanism (MLSM)

9

Based on the results of the ZAP attack, there

are 177 attack that can be done. From the 177

vulnerabilities, the number of XSS

vulnerabilities that were successfully attacked

was 103 out of 170 provided (60.58%). Based

on the type of XSS, the XSS vulnerabilities

consist of 12 XSS-based DOM attacks and 2

stored XSS, and 89 reflected XSS. In this

case, the XSS security vulnerability is at a

HIGH risk level which means that the

vulnerability is dangerous for the target web.

Table 2. ZAP Attackable XSS

Security Vulnerabilities

XSS Type Risk Level Attack

DOM Based XSS High 12

Stored XSS High 2

Reflected XSS High 89

Jumlah Celah Keamanan XSS 103

Unlike other security vulnerabilities,

XSS vulnerabilities that can be attacked by

ZAP are cla-ssified as security vulnerabilities

with a high level of risk. The following are the

differences and recapitulation of the level of

risk of security vulnerabilities found by ZAP.

Table 3. ZAP Attackable XSS Security

Vulnerabilities (Complete View)

XSS Type Risk Level Attack

Cross Site

Scripting

(DOM

Based)

High 12

Cross Site

Scripting

(Persistent)

High 2

Cross Site

Scripting

(Reflected)

High 89

Vulnerable JS

Library
Medium 1

Absence of

Anti-CSRF

Tokens

Low 13

Cookie No

HttpOnly Flag
Low 13

X-Content-

Type-Options

Header

Missing

Low 9

Information

Disclosure -

Suspicious

Comments

Informational 2

Loosely

Scoped

Cookie

Informational 23

Timestamp

Disclosure -

Unix

Informational 13

5.2. Arachni and ZAP Attacks on Non-

MLSM Websites (Implemented

MLSM)

After carrying out an attack on a

website that does not implement MLSM, the

attack is then carried out on a website that has

implemented MLSM. This is to see how

effective the MLSM implementation is in

detecting and overcoming XSS attacks. In this

attack trial, the researchers used the same

attacker's website and application. In

addition, before conducting the experiment,

the researcher resets the database so that

traces of the previous attack are lost and do

not affect the second stage of the attack.

A. Arachni Attack

The attack time spent when website has

activated MLSM is 1 hour 24 seconds. This

time is shorter than non-MLSM website

attacks, which take 2 hours 51 minutes 17

seconds. This happens because MLSM has

blocked access to attacks and closed security

holes on the website. The following is a

screenshot of the attack report showing that

the XSS attack cannot be carried out.

Jurnal Sienna, Volume 3, Nomor 2, Desember 2022

10

Figure 9. XSS Arachni Attack on MLSM

Website Cannot Be Executed

B. ZAP Attack

The same as Arachni's attack. ZAP is

also not capable of XSS attacks. None of the

XSS attacks were successfully carried out on

websites that enabled the MLSM feature.

ZAP only managed to perform attacks on

security vulnerabilities other than XSS. The

recap. of ZAP attacks can be seen in Figure

10 and table 4.

Figure 9. ZAP Attack Result Screenshot

(XSS not Found)

In addition to figure 9 above, a

recapitulation of security vulnerabilities that

can be attacked by ZAP can be seen in table

4. According to the data in the table, ZAP

cannot perform XSS attacks on websites that

have implemented MLSM.

Table 4. XSS Security Vulnerabilities

Arachni Can Attack

Attack Name Risk Level
Attack

Total

Vulnerable JS

Library
Medium 1

Absence of Anti-

CSRF Tokens
Low 13

Cookie No

HttpOnly Flag
Low 13

Attack Name Risk Level
Attack

Total

X-Content-Type-

Options Header

Missing

Low 9

Information

Disclosure -

Suspicious

Comments

Informational 2

Loosely Scoped

Cookie
Informational 23

Timestamp

Disclosure - Unix
Informational 13

C. Attack Result Comparison

After testing Arachni and ZAP attacks

on websites that have activated the MLSM

feature, MLSM is proven to be able to detect

and overcome 100% of XSS attacks. There is

no single type of XSS attack that can attack

websites. To get higher confidence,

researchers have conducted 2 experiments

and the results are still the same, namely

Arachni and ZAP cannot attack websites that

have implemented the MLSM feature..

Table 4. Comparison of MLSM and Non

MLSM Web Attack Results

XSS

Attack

Type

The Number of Attacks Can Do

After and Before MLSM Implementation

Arachni ZAP

Unimplem

ented

Impleme

nted

Unimplem

ented

Impleme

nted

1

Reflec

ted

XSS

124 0 12 0

2
Store

d XSS
22 0 2 0

3

Dom

Based

XSS

22 0 89 0

TOTAL 168 0 103 0

5.3. Comparison of the Effectiveness of

MPLS Implementation with Previous

Research

As previously stated, there are studies

that have tested methods to detect and

mitigate XSS attacks. However, the security

XSS Attack Detection And Mitigation Using Multi-Layer Security Mechanism (MLSM)

11

mechanisms used in previous studies have not

been able to overcome XSS attacks

holistically and comprehensively. The

method used in previous research is still not

able to detect and deal with XSS attacks

properly. The following is a comparison of

the implementation of MLSM with similar

studies also measure the effectiveness of the

method to overcome XSS attacks.

5.3.1. MLSM and OWASP ModSecurity

OWASP Web Application Firewall had

been individually applied on research (Akbar

& Ridha, n.d.). To test the security level of

XSS, researchers used 2 applications, namely

BeEF Explo-itation and XSSer Exploitation.

Based on the trials that have been carried out,

OWASP ModSecurity Firewall is able to

overcome reflected XSS attacks, but fails to

overcome stored XSS attacks. In contrast to

this research, MLSM is able to overcome the

attacks of three types of XSS attacks, namely

stored, reflected, and DOM based XSS..

5.3.2. MLSM and Metode Metacharacter

This research implement application

protection using the Meta-Character Method.

In this study, researchers only conducted a

trial of reflected XSS which was sent through

the search box. In addition, the trial website

used is also too simple so that it does not

represent the actual website. The researcher

also did not use the attacker application, only

sent 2 XSS queries in the search box.

Meanwhile, MLSM is able to detect and

overcome 3 types of XSS and use a more

complex and representative test

web(Yulianingsih, 2017).

5.3.3. MLSM and Metode Advanced

Encryption Standard (AES)

Research implemented the AES

algorithm to overcome the XSS vulnerability.

To test the website's resilience from XSS

attacks, the study used one attacker

application, namely Acunetix. Based on the

test results, there were only 2 XSS attacks

found by Acunetix and resolved by the AES

method, namely stored XSS. The method

offered in this study cannot detect DOM-

based and reflected attacks. Meanwhile,

MLSM used 2 attacker applications and was

able to find 100 XSS vulnerabilities (Putra et

al., 2020).

5.3.4. MLSM and Native PHP Function

Based on the results of applying the

proposed method in research (Kurniawan &

Setianto, 2020), there are 8 out of 21 XSS

security vulnerabilities that cannot be handled

by Native PHP Function. The study only

conducted a partial trial and used a simple

form so that it did not represent the actual

web. Meanwhile, MLSM is able to handle

100% of the XSS vulnerabilities committed

by two attacking applications.

To strengthen the application of the

proposed method, this study calculates the

ratio of the types of XSS that can be handled

and the XSS security vulnerabilities provided.

In addition, researchers also calculated the

level of effectiveness between methods. The

formula used is as follows..
Ratio Calculation Formula

By Attack Type XXS

 RJS = __∑ JST__

 JSG

Information:

RJS = Attack Type Ratio

ANN = Types of Identified

Security Vulnerabilities

JSG = Highest Vulnerability

Ratio Calculation Formula

Based on Successfully

Handled Gaps

 RCK = __(CK0 – CK1)__

 CKG

Information:

RCK = Vulnerability Ratio

CK0 = Unimplemented

Vulnerability

CK0 = Implemented

Vulnerability

CKG = Highest Vulnerability

Handled Gap

Table 5. Comparison of the Effectiveness of

MLSM with Other Methods

 Method Used

Type of

XSS
RJS

XSS

Available

Identified

Vulnerable
RCK

Effectivity

Level

(RJS x

RCK)
R S D Un Im

1 MLSM 1 1 1 1 170 168 0 1 1

Jurnal Sienna, Volume 3, Nomor 2, Desember 2022

12

2

OWASP

Fiewall (Akbar

& Ridha, n.d.)

1 0 0 0,3 3 3 1 0,011 0,0035

4

Metacharacter

(Yulianingsih,

2017)

1 0 0 0,3 1 1 0 0,005 0,0017

5
AES (Putra et

al., 2020)
0 1 0 0,3 2 2 0 0,011 0,0035

6

Native PHP

(Kurniawan &

Setianto,

2020)

1 0 0 0,3 1 1 0 0,005 0,0017

*) If more than 1 attacker application, the largest number of

post-implementation loopholes is taken

6. Conclusion

Based on the testing and implemen-

tation carried out by this research, MLSM is

proven to be able to overcome XSS attacks

from two attacking applications, namely

Arachni and ZAP. MLSM is also able to

overcome three types of XSS attacks, namely

stored, reflected, and DOM based XSS. This

study also proves that the application of a

single security mechanism, as has been

applied to research (Akbar & Ridha, n.d.),

(Yulianingsih, 2017), (Putra et al., 2020), and

(Kurniawan & Setianto, 2020), are ineffective

against all three types of XSS attacks.

According to table 5, MLSM proved to be

more effective than previously method.

The implementation of MLSM has been

proven to be able to detect and mitigate 100%

of XSS security vulnerabilities, starting from

stored, reflected, and DOM based XSS. This

proof has been carried out comprehensively

and holistically by two applications by

activating the attack mode. This test has been

carried out two times and got the same results,

namely the implementation of MLSM

successfully overcomes and mitigates 100%

of XSS security vulnerabilities. Therefore,

MLSM is an effective method for dealing

with XSS attacks.

REFERENCES

Ahad, D. S., Akbar, M., & Ulfa, M. (2018). ANASLISIS KERENTANAN TERHADAP

ANCAMAN SERANGAN PADA WEBSITE PDAM TIRTA MUSI PALEMBANG.

INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION, 2(4), 10.

Akbar, M., & Ridha, M. A. F. (n.d.). SQL Injection and Cross Site Scripting Prevention Using

OWASP Web Application Firewall. 7.

Alamsyah, A. (n.d.). ANALISA KEAMANAN INFORMASI PADA APLIKASI BERBASIS WEB

MENGGUNAKAN TEKNIK WEB APPLICATION FIREWALL MODSECURITY. 12.

Buchanan, B. (n.d.). The Cybersecurity DIlemma: Hacking, Trust, and Fear Between Nations.

300.

Gan, J.-M., Ling, H.-Y., & Leau, Y.-B. (2021). A Review on Detection of Cross-Site Scripting

Attacks (XSS) in Web Security. In M. Anbar, N. Abdullah, & S. Manickam (Eds.),

Advances in Cyber Security (pp. 685–709). Springer. https://doi.org/10.1007/978-981-

33-6835-4_45

Giri, S. (2019). Cyber Crime, Cyber threat, Cyber Security Strategies and Cyber Law in Nepal.

9(2249), 11.

Gupta, B. B., & Chaudhary, P. (n.d.). Cross-Site Scripting Attacks. 171.

Institute of Engineering & Management, Y-12 Saltlake Electronics Complex, Sector V, Kolkata

-91 INDIA, Mukhopadhyay, I., Goswami, S., & Mandal, E. (2014). Web Penetration

XSS Attack Detection And Mitigation Using Multi-Layer Security Mechanism (MLSM)

13

Testing using Nessus and Metasploit Tool. IOSR Journal of Computer Engineering,

16(3), 126–129. https://doi.org/10.9790/0661-1634126129

Joshi, S. (n.d.). SQL Injection Attack and Defense. 24.

Kaluza, M., Kalanj, M., & Vukelić, B. (2019). A Comparison of Back-end Framework for Web

Application Development. Zbornik Veleučilišta u Rijeci, 7(1), 317–332.

https://doi.org/10.31784/zvr.7.1.10

Kurniawan, M. F., & Setianto, W. (2020). Optimasi Metode Otomatisasi Penghilangan

Kerentanan Terhadap Serangan XSS Pada Aplikasi Web. 2, 8.

Mahmoud, S. K., Alfonse, M., Roushdy, M. I., & Salem, A.-B. M. (2017). A comparative

analysis of Cross Site Scripting (XSS) detecting and defensive techniques. 2017 Eighth

International Conference on Intelligent Computing and Information Systems (ICICIS),

36–42. https://doi.org/10.1109/IN℡CIS.2017.8260024

Marchand-Melsom, A., & Nguyen Mai, D. B. (2020). Automatic repair of OWASP Top 10

security vulnerabilities: A survey. Proceedings of the IEEE/ACM 42nd International

Conference on Software Engineering Workshops, 23–30.

https://doi.org/10.1145/3387940.3392200

Mateo Tudela, F., Bermejo Higuera, J.-R., Bermejo Higuera, J., Sicilia Montalvo, J.-A., &

Argyros, M. I. (2020). On Combining Static, Dynamic and Interactive Analysis Security

Testing Tools to Improve OWASP Top Ten Security Vulnerability Detection in Web

Applications. Applied Sciences, 10(24), 9119. https://doi.org/10.3390/app10249119

Mokbal, F. M. M., Dan, W., Imran, A., Jiuchuan, L., Akhtar, F., & Xiaoxi, W. (2019).

MLPXSS: An Integrated XSS-Based Attack Detection Scheme in Web Applications

Using Multilayer Perceptron Technique. IEEE Access, 7, 100567–100580.

https://doi.org/10.1109/ACCESS.2019.2927417

OWASP Top-10 2021, statistically calculated proposal. (n.d.). Wallarm Blog. Retrieved June

19, 2021, from https://lab.wallarm.com/owasp-top-10-2021-proposal-based-on-a-

statistical-data/

Prasad, P. (2016). Mastering modern web penetration testing: Master the art of conducting

modern pen testing attacks and techniques on your web application before the hacker

does!

http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&

AN=1409187

Putra, Y., Yunus, Y., & Sumijan, S. (2020). Meningkatkan Keamanan Web Menggunakan

Algoritma Advanced Encryption Standard (AES) Terhadap Seragan Cross Site Scripting.

Jurnal Sistim Informasi dan Teknologi. https://doi.org/10.37034/jsisfotek.v3i2.110

Rekap Serangan Siber (Januari – April 2020) | bssn.go.id. (n.d.). Retrieved July 19, 2021, from

https://bssn.go.id/rekap-serangan-siber-januari-april-2020/

Rodríguez, G. E., Torres, J. G., Flores, P., & Benavides, D. E. (2020). Cross-site scripting (XSS)

attacks and mitigation: A survey. Computer Networks, 166, 106960.

https://doi.org/10.1016/j.comnet.2019.106960

Jurnal Sienna, Volume 3, Nomor 2, Desember 2022

14

Salas, M. I. P., & Martins, E. (2014). Security Testing Methodology for Vulnerabilities

Detection of XSS in Web Services and WS-Security. Electronic Notes in Theoretical

Computer Science, 302, 133–154. https://doi.org/10.1016/j.entcs.2014.01.024

Sari, W. P., & Putra, I. N. A. P. (2017). Analisis Serangan Hacker Menggunakan Honeypot

High Interaction. Jurnal Tiarsie, 14(1), 13–18.

Serangan Siber Ancam Indonesia—Infografik Katadata.co.id. (2019, March 25).

https://katadata.co.id/ariayudhistira/infografik/5e9a5513db5c6/serangan-siber-ancam-

indonesia

Shrivastava, A., Choudhary, S., & Kumar, A. (2016). XSS vulnerability assessment and

prevention in web application. 2016 2nd International Conference on Next Generation

Computing Technologies (NGCT), 850–853.

https://doi.org/10.1109/NGCT.2016.7877529

Søhoel, H. M. (n.d.). OWASP top ten—What is the state of practice among start-ups? 94.

Udayana University, Bali, Indonesia, Wiradarma, A. A. B. A., & Sasmita, G. M. A. (2019). IT

Risk Management Based on ISO 31000 and OWASP Framework using OSINT at the

Information Gathering Stage (Case Study: X Company). International Journal of

Computer Network and Information Security, 11(12), 17–29.

https://doi.org/10.5815/ijcnis.2019.12.03

Varghese, S. (2015). HTTP Middleware. In S. Varghese (Ed.), Web Development with Go:

Building Scalable Web Apps and RESTful Services (pp. 99–120). Apress.

https://doi.org/10.1007/978-1-4842-1052-9_6

Wibowo, R. M., & Sulaksono, A. (2021). Web Vulnerability Through Cross Site Scripting

(XSS) Detection with OWASP Security Shepherd. Indonesian Journal of Information

Systems, 3(2), 149. https://doi.org/10.24002/ijis.v3i2.4192

Wijayarathna, C., & Gamagedara Arachchilage, N. (2019). Fighting Against XSS Attacks. A

Usability Evaluation of OWASP ESAPI Output Encoding. Hawaii International

Conference on System Sciences. https://doi.org/10.24251/HICSS.2019.877

XSS Attacks Cross Site Scripting Exploits and Defense. (n.d.). 482.

Yulianingsih, Y. (2017). Melindungi Aplikasi dari Serangan Cross Site Scripting dengan

Metode Metacharacter. Jurnal Nasional Teknologi dan Sistem Informasi, 3(1), Article 1.

https://doi.org/10.25077/TEKNOSI.v3i1.2017.83-88

